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Pentamethyldiethylenetriamine (PMDT), tetraglyme, and the crown ether
12-Crown-4 (12-Cr-4) were investigated as electrolyte additives for
lithium-ion cells using graphite anodes. Cyclic voltametry at glassy
carbon electrodes in 1 mol/L LiPF6/propylene carbonate (PC) solutions
containing PMDT, 12-Cr-4, or tetraglyme additives showed that the PMDT
additive was electrochemically oxidized at ~3.5 V versus lithium reference.
The electrolytes with 12-Cr-4 and tetraglyme, on the other hand, were found
to be stable up to ~4.5 V, where the control electrolyte without any additive
was oxidized. Ionic conductivity measurements of the same solutions
showed that all three additives enhanced the conductivity of 1 mol/L
LiPF6/PC solution at 25 °C. Lithium cycling studies in PC solutions using
graphite electrodes showed that the 12-Cr-4 and tetraglyme additives
allowed reversible lithium intercalation into graphite; whereas, the PMDT
additive did not have any effect. However, the PMDT additive was found to
reduce the irreversible capacity loss on the first cycle in ethylene
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1. Introduction
It has been reported [1–11] that adding ligands, such as the crown ether
12-Crown-4 (12-Cr-4) or tetraglyme, to electrolytes of lithium-ion cells
and batteries with graphite negative electrodes can prevent the
cointercalation of solvent molecules with lithium in graphite layers. These
additives can also allow reversible intercalation of lithium into graphite in
electrolytes containing solvents that do not form stable passivating solid
electrolyte interface (SEI) films on carbon, such as propylene carbonate
(PC). The large crown ether or tetraglyme molecules tightly chelate the
lithium ions and prevent the solvent molecules from passing into the
graphite layers along with lithium ions. Unfortunately, crown ethers are
too costly and toxic to be used as additives in practical battery electrolytes
for commercial or military applications.

Another class of large chelating ligands that could be used as electrolyte
additives is complex tertiary amines, such as N,N,N’,N’,N”-
pentamethyldiethylenetriamine (PMDT), N,N,N’N”,N’”,N’”-
hexamethyltriethylenetetraamine (HMTT), or N,N,N’,N’ -
tetramethylethylenediamine (TMED). It was shown [12,13] that these
compounds could complex lithium ion so that lithium salts with lattice
energies as high as 210 kcal per mole could be dissolved in very nonpolar
solvents such as toluene. Laboratory cells with electrolytes consisting of
amine chelated lithium salts dissolved in aromatic hydrocarbons were
made and discharged, although conductivities were too low for practical
application. Whitney and Foster [14] later showed that adding as little as
10 percent of a polar solvent, such as propylene carbonate, could increase
the conductivity of electrolyte solutions, such as 1 mol/L PMDT:LiAsF6/
PC-toluene, by over an order of magnitude, making these solutions
suitable as battery electrolytes. These complex amines are far less expen-
sive than crown ethers and may have similar beneficial effects on revers-
ible intercalation of lithium into graphite. Tertiary amines as electrolyte
additives are much less well known in the electrochemical community
and their use in lithium-ion batteries has not been explored.
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2. Experimental Procedures
We used lithium hexafluorophosphate (LiPF6, Hashimoto, Japan)* and
SFG-44 graphite (Timcal Ltd) as received from suppliers. Ethylene car-
bonate (EC) and PC (Grant Chemical Co), tertiary polyamine PMDT,
12-Cr-4, and tetraglyme (all from Aldrich Chemical Co) were dried over
4A molecular sieves and verified by Karl-Fischer coulometric titration to
have moisture concentration of less than 20 p/m before use. We con-
ducted all work in a Vacuum Atmospheres Nexus One glove box with the
argon atmosphere continuously monitored to be less than 0.5 p/m
moisture/oxygen.

We determined the ionic conductivity of the following solutions:
(1) 1 mol/L LiPF6/PC, (2) 1 mol/L LiPF6:1 mol/L PMDT/PC, (3) 1 mol/L
LiPF6:1 mol/L 12-Cr-4/PC, and (4) 1 mol/L LiPF6:1 mol/L tetraglyme/
PC. The conductance was measured with two-electrode sealed glass
conductivity cells with platinum electrodes at temperatures of –30, 0, and
25 °C at a frequency of 1 kHz. We allowed the system to equilibrate for
3 hr at each temperature before conductance measurements were re-
corded. We determined the cell constant using a standard aqueous potas-
sium chloride solution at 25 °C and determined the conductivity using
the calculated cell constant.

We examined the electrochemical stability of LiPF6 in PC solutions
containing PMDT, 12-Cr-4, and tetraglyme additives by recording linear
sweep voltammograms in these solutions at smooth glassy carbon
electrodes (electrode area: 0.0792 cm2). Then we performed voltametric
scans using an EG&G Instruments, Inc, Princeton Applied Research (PAR)
potentiostat/galvanostat (model 273). The experiments were computer-
controlled with EG&G PAR electrochemical analysis software
(model 270).

We doctor bladed graphite SFG 44 (Timcal Ltd) electrodes on electro-
deposited copper foil (All Foils, Inc) substrates using a 5 percent
polyvinylidenefluoride (PVDF) binder. The graphite electrodes were
vacuum dried at 120 °C for over 24 hr before use.

We performed lithium intercalation and deintercalation in graphite by
cycling graphite flag electrodes versus lithium electrodes in sealed glass
cells in the glove box. The cells were cycled with an Amel model 546
galvanostat/electrometer at a current density of 28 µA/cm2 for all lithium
cycling experiments. We verified the currents using a Hewlett-Packard
model 3435A digital multimeter.

To learn more about the passivating films formed on the graphite elec-
trodes in electrolytes containing the additives, we moved the graphite
electrodes after the first cycle from an electrolyte containing an additive
to the same electrolyte without the additive. To ensure that no residual
additive remained on the electrode being transferred, we soaked the
electrodes in solvent only, either PC or EC:PC, for 24 hr, without salt or
additive. The second cycle was done in an electrolyte without the
additive.

*Sources are indentified in parentheses.
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3. Results and Discussion
Figures 1 and 2 show typical voltammograms obtained at a scan rate of
20 mV/s on glassy carbon electrodes in electrolytes with different addi-
tives. The results show that solutions containing PMDT were stable only
up to a potential of about 3.5 V, where the amine starts to oxidize. The
solutions containing 12-Cr-4 or tetraglyme additives were stable to 4.5 V,
where the control electrolyte with no additive also oxidizes. Figure 2
shows that lithium metal deposition and dissolution occurred for solu-
tions containing any of the three additives during the cathodic scan.

Figure 3 shows the effect of the PMDT, crown-ether, and tetragylme
additives on the conductivity of 1 mol/L LiPF6/PC electrolyte versus
temperature. Figure 3 reveals several important points. First, all the
additives increased the conductivity of the LiPF6/PC solution at all
temperatures except –30 °C, where the LiPF6/PC solutions with and
without the 12-Cr-4 additive have the same value. Second, solutions
containing the 12-Cr-4 and tetragylme additives have similar conductivi-
ties at all temperatures over the entire temperature range. Third, PMDT
gives the largest increase in conductivity of the three additives.

Figure 1. Anodic
voltammograms
obtained at glassy
carbon electrodes in
1 mol/L LiPF6/PC
containing PMDT
(dot dash), 12-Cr-4
(dash), and
tetraglyme (dot) at a
scan rate of 20 mV/s.

Figure 2. Cathodic
voltammograms
obtained at glassy
carbon electrodes in
1 mol/L LiPF6/PC
containing PMDT
(solid), 12-Cr-4
(dash), and
tetraglyme (dot) at a
scan rate of 20 mV/s.
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Figure 4 shows the charge-discharge curve for a graphite electrode versus
lithium in 1 mol/L LiPF6/PC and 1 mol/L LiPF6:1 mol/L PMDT/PC
electrolytes. It shows an extensive exfoliation of the graphite electrode
and it also shows that reversible capacity is not obtained in either electro-
lyte. The overall behavior is essentially the same with or without the
additive.

Figure 5 shows the charge-discharge curve for a fresh graphite electrode
in 1 mol/L LiPF6/EC:PC (1:1 by volume) and 1 mol/L LiPF6:1 mol/L
PMDT/EC:PC (1:1 by volume). The presence of the PMDT additive
increases the reversible capacity and reduces exfoliation compared to the
electrolyte without the additive. Interestingly, the plateaus that are char-
acteristic of staging reactions in graphite are not present in the curve for
the graphite electrode in the amine containing electrolyte. After the first
cycle in the electrolyte containing PMDT, we washed the graphite elec-
trode in EC:PC as previously described and then cycled in 1 mol/L
LiPF6/EC:PC with no additives. The electrode intercalated lithium
readily with no exfoliation. Again, the staging plateaus are absent from
the curves. The performance was similar to the first cycle with the addi-
tive. Clearly, there is more reversible capacity than can be achieved in
electrolyte without the PMDT additive, indicating that a stable SEI was
formed during the first cycle that prevents further intercalation of solvent
molecules into graphite.

Figure 6 shows the results for the cycling data in 1 mol/L LiPF6:1 mol/L
12-Cr-4/PC. The charge-discharge curves show very distinct staging
plateaus for intercalation and deintercalation of lithium into graphite.
After one cycle, we removed the graphite electrode from the electrolyte
and washed it in PC; then we cycled in the electrolyte without the addi-
tive. These cycling data results are also shown in figure 6, and it is seen
that there was no reversible capacity. Extensive exfoliation destroyed the
graphite electrode.

Figure 3. Conductivity
of 1 mol/L LiPF6
electrolytes with and
without additives.
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Figure 4. Voltage
profiles of first cycle
for Li/graphite cell in
1 mol/L LiPF6/PC
electrolyte with and
without PMDT
additive.

Figure 5. Voltage
profiles of Li/graphite
cells in 1 mol/L LiPF6/
EC:PC 1:1 with and
without PMDT
additive.

Figure 6. Voltage
profiles of first cycle
Li/graphite cell with
1 mol/L LiPF6:1 mol/L
12-Cr-4/PC and
second cycle in
electrolyte without
12-Cr-4 additive.
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Figure 7 shows that lithium intercalated reversibly into graphite in
1 mol/L LiPF6:1 mol/L tetraglyme/PC electrolytes. Subsequently switch-
ing the electrolyte solution to 1 mol/L LiPF6/PC does not change the
result, indicating that a stable SEI was formed in the first cycle. The
results for cells with tetraglyme additive are similar to the results for the
amine additives in that no plateaus are associated with staging in the
charge-discharge curves.

We observed that all three additives increase the ionic conductivity of the
LiPF6/PC electrolyte. 12-Cr-4 [10] and PMDT [14] have been used in the
past as ionic conductivity enhancers, and both have strong affinity for Li+

ions in solution [7,10,12–14]. These complexes reduce the amount of ion
association (i.e., formation of neutral complexes) and hence lead to an
increase in ionic conductivity. The higher conductivity of the PMDT
solution may be because PMDT complexes the Li+ ions more strongly
than 12-Cr-4, allowing greater dissociation of neutral complexes.

The results of the cycling studies on Li/graphite cells show that although
all three ligands (PMDT, 12-Cr-4, and tetraglyme) result in some improve-
ment in the lithium cycling, fundamental differences exist in the behavior
of lithium intercalation into graphite in electrolytes with different
additives.

Several groups have studied the effect of the electrolyte additive 12-Cr-4
on the graphite intercalation of lithium ion in PC or EC:PC solvent elec-
trolytes [7,10–11]. According to the model proposed by Aurbach et al [7],
improvement in reversible capacity is due to the strong affinity of 12-Cr-4
to the lithium ion. This prevents the lithium ion from dragging PC mol-
ecules into the graphite layers and causing exfoliation before a passivat-
ing SEI layer is formed on the graphite surface. In situ Fourier transform
infrared (FTIR) studies [7] confirmed that only the solvent molecules were
reduced on the electrode surface to form the SEI and not 12-Cr-4. Revers-
ible intercalation of lithium can even be achieved when the concentration
of 12-Cr-4 is as little as one-tenth of the lithium-ion concentration,
because lithium ions complexed by 12-Cr-4 are more mobile.

Figure 7. Voltage
profile of first cycle
for Li/graphite cell in
a 1 mol/L LiPF6:1 mol/
L tetraglyme/PC
electrolyte and
second cycle without
tetraglyme additive.
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Because we found no reversible capacity in the PC-based electrolyte
containing the PMDT additive suggests that although the amine ligand
has strong affinity for the lithium ion (as evidenced by the conductivity
data), it does not completely dissociate the lithium ion from the propy-
lene carbonate; thus it allows some PC to cointercalate into the graphite
layers. If ethylene carbonate is present in the electrolyte, then these results
suggest that PMDT sufficiently hinders cointercalation of solvent mol-
ecules into the graphite layers until a stable SEI layer is formed on the
carbon from the reduction of ethylene carbonate. Therefore, switching to
the electrolyte without the additive for the second cycle does not affect
the result, because a stable SEI has already been formed during the first
cycle.

The results on the first cycle for the cells containing 12-Cr-4 electrolyte are
similar to results obtained by other researchers [7,10–11]. The crown ether
ligand allows the reversible lithium intercalation with some irreversible
capacity loss on the first cycle. The results for the second cycle after the
electrode was switched to an electrolyte containing no crown ether are
not consistent with the formation of a stable SEI layer. This is in contrast
to the suggestions by other researchers [4,7,10] who maintain that a stable
SEI layer is formed. The material reduced on the carbon surface during
the first cycle does not prevent the cointercalation of PC into the graphite
layers once crown ether is no longer present in the electrolyte. The results
suggest that cointercalation of solvent is prevented when 12-Cr-4 is
present by the very complete solvation of lithium by the crown ether
excluding other solvent molecules, particularly PC, from cointercalating
in graphite. The film, however, only passivates outer graphite surface and
does not prevent cointercalation of PC if 12-Cr-4 is not present in the
electrolyte.

The results for graphite cycling in 1 mol/L LiPF6:1 mol/L tetraglyme/PC
shown in figure 7 are similar to the results for electrolyte with the 12-Cr-4
additive. Reversible capacity is readily achieved in electrolytes with a PC
solvent. After switching to an electrolyte without tetraglyme additive, we
achieved reversible capacity on the second cycle indicating that unlike the
crown ether, a stable SEI interface is formed on the graphite surface.

The charge-discharge curves for the graphite electrode in electrolyte
containing the 12-Cr-4 additive show the familiar plateaus associated
with lithium staging within graphite. The plateaus are noticeably absent if
PMDT or tetraglyme is present as an additive in the electrolyte. Their
absence could be due to cointercalation of these large ligands into the
graphite layers inhibiting the formation of stages. Concentration of
tetraglyme at the graphite interface would be somewhat lower than
12-Cr-4 if the tetraglyme is cointercalated and the 12-Cr-4 does not go into
the graphite layers. This could be why a more passivating film is formed
in electrolytes containing tetraglyme than in electrolytes containing
12-Cr-4 additive.
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4. Conclusions
The results of the voltametric scans show that PMDT cannot be used as an
additive to LiPF6/PC electrolytes above 3.5 V versus lithium because it
will oxidize at the positive electrode at that potential. Similar studies with
12-Cr-4 and tetraglyme additives have shown that these materials are as
stable in solution as the PC or EC solvents, which oxidize at ~4.5 V.

We investigated the electrochemical behavior of Li/graphite cells using
1 mol/L LiPF6/PC electrolyte with and without 1 mol/L PMDT, 1 mol/L
12-Cr-4, and 1 mol/L tetraglyme additives. Electrolytes containing the
PMDT additive do not allow reversible intercalation of lithium if PC is the
only solvent. In mixed EC:PC solvents, however, extensive intercalation
of lithium into carbon can be achieved with the PMDT additive, and the
irreversible capacity loss is considerably less with the PMDT additive
present. PMDT was also shown to be the most effective conductivity
enhancer of the three additives in 1 mol/L LiPF6/PC electrolytes.

The 12-Cr-4 is an effective additive for improving the intercalation of
lithium into graphite, as described in the literature [7,10–11]. However,
our results indicate that the film formed on the graphite surface is not
sufficient to prevent PC molecules from being cointercalated into the
graphite layers. Thus, the successful intercalation of lithium into carbon
in PC electrolytes containing the 12-Cr-4 additive must be explained by a
mechanism other than the formation of a passivating film on the electrode
surface.

Cells with electrolyte containing a tetraglyme additive showed the best
overall performance on lithium cycling. Unlike 12-Cr-4, this additive
allows a stable film to form on the first cycle, which prevents further
solvent intercalation. Tetraglyme also has a quite significant cost advan-
tage over 12-Cr-4, is stable to much higher potentials than PMDT, and
improves the conductivity of the electrolyte. In the search for new electro-
lytes for lithium-ion batteries, tetraglyme may play an important role as
an electrolyte component.
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